The basic operations performed on the image are:
- Convert image to NumPy Array
- Convert/transform OpenCV read image to RGB from BRG channel
- Reading image as a gray image
- Resize Image
- Resize Image using Ratio
- Flip Images
- Save Image
import numpy as np import matplotlib.pyplot as plt import cv2 # Image Read img = cv2.imread('signature.jpeg') # automatically converted to numpy array type(img) # should be: numpy.ndarray, not NoneType img.shape # Both opencv and matplotlib read image channels differently # matplotlib -> RGB = Red Green Blue # opencv -> BGR = Blue Green Red plt.imshow(img) # Convert/tranform opencv read image to RGB from BRG channel fixed_img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(fixed_img) # Reading image as a gray image gray_img = cv2.imread('signature.jpeg', cv2.IMREAD_GRAYSCALE) type(gray_img) gray_img.shape plt.imshow(gray_img, cmap='gray') # Resize Image resize_img = cv2.resize(fixed_img, (600, 250)) # width x height plt.imshow(resize_img) # Resize Image using Ratio w_ratio=0.5 # 50% Width h_ratio=0.5 # 50% height ratio_img = cv2.resize(fixed_img, (0,0), fixed_img, w_ratio, h_ratio) plt.imshow(ratio_img) # Flip Images flip_img = cv2.flip(fixed_img,1) # can be 0,1,-1 plt.imshow(flip_img) #Save Image cv2.imwrite('flip_signature.jpeg', fixed_img)